

Vishay Beyschlag

Platinum SMD Flat Chip Temperature Sensor

PTS SMD Flat Chip Temperature sensors are the perfect choice for temperature control of electronics operating under varying environmental conditions. The highly controlled platinum thin film manufacturing process guarantees an outstanding stability of temperature characteristics which ensures reliable operation even under harsh conditions. Typical applications include automotive, aviation and industrial electronics.

FEATURES

- Specification according to IEC 60751
- · Advanced thin film technology
- Short reaction times down to $t_{0.9} \le 2$ s (in air)
- · Outstanding stability of temperature characteristic
- Standard SMD sizes
- Green product, supports lead (Pb)-free soldering

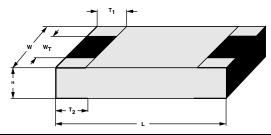
APPLICATIONS

Temperature measurement in

- Automotive electronics
- · Aviation electronics
- Industrial electronics

TECHNICAL SPECIFICATIONS						
DESCRIPTION		PTS 0603	PTS 0805	PTS 1206		
Resistance values R ₀ at 0 °C		100 Ω	100 Ω, 500 Ω	100 Ω, 500 Ω, 1000 Ω		
Temperature coefficient (0 °C + 100 °C)		+ 3850 ppm/K				
Tolerance classes		В, 2В				
Temperature range		- 55 °C to + 155 °C				
Long term stability $\Delta R_0/R_0$; R_0 change after 1000 h at + 155 °C		< ± 0.04 %				
Insulation resistance		> 10 MΩ				
Measurement current I _{meas.} (DC)	100 Ω	0.1 mA to 0.25 mA	0.1 mA to 1.0 mA	0.1 mA to 1.0 mA		
	500 Ω	-	0.1 mA to 0.25 mA	0.1 mA to 0.25 mA		
	1000 Ω	-	-	0.1 mA to 0.25 mA		
Self-heating (1) still air (v = 0 m/s)		≤ 0.9 K/mW	≤ 0.8 K/mW	≤ 0.7 K/mW		
Thermal response time (1)	flowing water	<i>t</i> _{0.5} ≤ 0.1 s	$t_{0.5} \le 0.2 \text{ s}$	$t_{0.5} \le 0.3 \text{ s}$		
	(v = 0.4 m/s)	<i>t</i> _{0.9} ≤ 0.2 s	$t_{0.9} \le 0.3 \text{ s}$	<i>t</i> _{0.9} ≤ 0.4 s		
	flowing air (v = 3.0 m/s)	<i>t</i> _{0.5} ≤ 1.0 s	<i>t</i> _{0.5} ≤ 1.5 s	<i>t</i> _{0.5} ≤ 2.0 s		
		<i>t</i> _{0.9} ≤ 2.0 s	<i>t</i> _{0.9} ≤ 3.0 s	$t_{0.9} \le 5.0 \text{ s}$		

Note:


⁽¹⁾ Valid for sensor element only.

Vishay Beyschlag

Platinum SMD Flat Chip Temperature Sensor

DIMENSIONS

DIMENSIONS - PTS sensor types, mass and relevant physical dimensions							
TYPE	H (mm)	L (mm)	W (mm)	W _T (mm)	T ₁ (mm)	T ₂ (mm)	MASS (mg)
PTS 0603	0.45 + 0.1/- 0.05	1.55 ± 0.05	0.85 ± 0.1	> 75 % of W	0.3 + 0.15/- 0.2	0.3 + 0.15/- 0.2	1.9
PTS 0805	0.45 + 0.1/- 0.05	2.0 ± 0.1	1.25 ± 0.15	> 75 % of W	0.4 + 0.1/- 0.2	0.4 + 0.1/- 0.2	4.6
PTS 1206	0.55 ± 0.1	3.2 + 0.1/- 0.2	1.6 ± 0.15	> 75 % of W	0.4 + 0.1/- 0.2	0.4 + 0.1/- 0.2	9.2

PRODUCTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of platinum is deposited on a high grade ceramic body (96 % Al₂O₃). The sensor-elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating.

QUALITY

The result of the determined production is verified by an extensive testing procedure performed on 100 % of the individual sensors. Only accepted products are laid directly into the paper tape in accordance with **IEC 60286-3**.

STORAGE

Solderability is specified for 2 years after production or re-qualification. The permitted storage time is 20 years.

ASSEMBLY

The Pt-sensors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapour phase. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The Pt-sensors are RoHS compliant, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing.

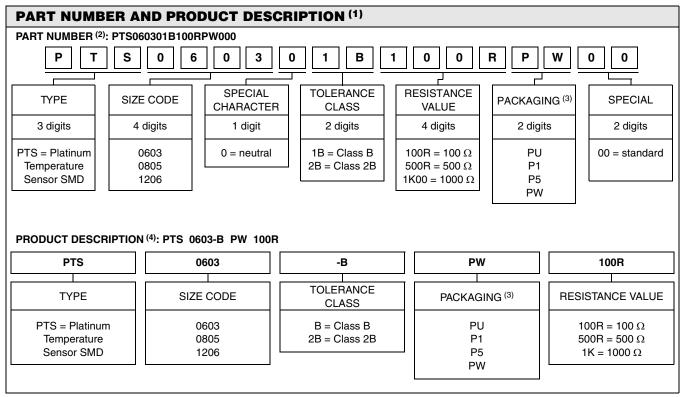
All products comply with the CEFIC-EECA-EICTA list of legal restrictions on hazardous substances.

This includes full compatibility with the following directives:

- 2000/53/EC End of Vehicle life Directive (ELV)
- 2000/53/EC Annex II to End of Vehicle Life Directive (ELV II)
- 2002/95/EC Restriction of the use of Hazardous Substances Directive (RoHS)
- 2002/96/EC Waste Electrical and Electronic Equipment Directive (WEEE)

APPROVALS

The Pt-sensors are tested in accordance with IEC 60751 and IEC 60068 series.


Lead (Pb)-free Identification on the Package Label

www.vishay.com For technical questions, contact: nlr.europe@vishay.com Document Number: 28762
Revision: 29-Jan-08

Platinum SMD Flat Chip Temperature Sensor

Vishay Beyschlag

Notes:

- (1) Products can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION
- (2) The Part Number is shown to facilitate the introduction of a unified part numbering system
- (2) Please refer to table PACKAGING
- (4) We recommend that the Production Description is used to minimize the possibility of errors in order handling

PACKAGING					
MODEL	DIAMETER	PIECES	CODE	BOX/REEL	
PTS 0603	114 mm	100	PU	BOX	
	180 mm/7"	1000	P1	REEL	
	180 mm/7"	5000	P5	REEL	
	330 mm/13"	20 000	PW	REEL	
PTS 0805	114 mm	100	PU	BOX	
	180 mm/7"	1000	P1	REEL	
	180 mm/7"	5000	P5	REEL	
	330 mm/13"	20 000	PW	REEL	
PTS 1206	114 mm	100	PU	BOX	
	180 mm/7"	1000	P1	REEL	
	180 mm/7"	5000	P5	REEL	
	330 mm/13"	20 000	PW	REEL	

Vishay Beyschlag

Platinum SMD Flat Chip Temperature Sensor

FUNCTIONAL PERFORMANCE

The temperature resistance relationships of the PTS series follow different equations:

for the temperature range of - 55 °C up to 0 °C:

$$R_{(\mathcal{S})} = R_0 \times (1 + A \times \mathcal{S} + B \times \mathcal{S} + C \times (\mathcal{S} - 100 ^{\circ}C) \times \mathcal{S}^3)$$

and for the temperature range of 0 °C up to + 155 °C:

$$R_{(\mathcal{S})} = R_0 \times (1 + A \times \mathcal{S} + B \times \mathcal{S}^2)$$

 $R_{(9)}$: resistance as a function of temperature

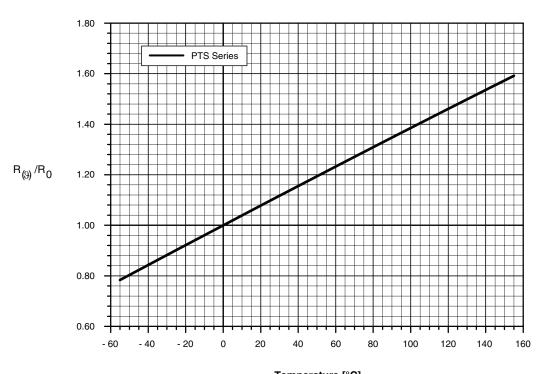
R₀: nominal resistance value at 0 °C

9: temperature in °C

According to IEC 60751 the values of the coefficients are:

$$A = 3.9083 \times 10^{-3} \, {}^{\circ}C^{-1}$$

B =
$$-5.775 \times 10^{-7} \, ^{\circ}\text{C}^{-2}$$

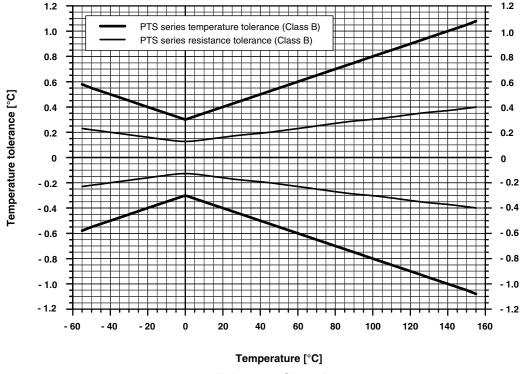

$$C = -4.183 \times 10^{-12} \, {}^{\circ}C^{-4}$$

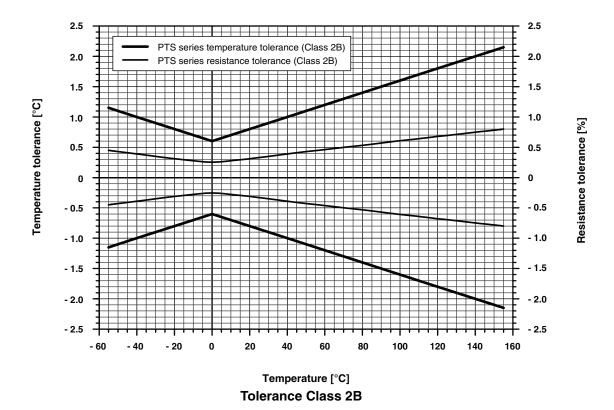
The tolerances values of the PTS series are classified by the following equations:

Class B: $\Delta \mathcal{G}_B = \pm (0.3 + 0.005 \times |\mathcal{G}|)$

Class 2B: $\Delta \theta_{2B} = \pm (0.6 + 0.010 \text{ x } | \theta)$

NOMINAL RESISTANCE VALUE						
TEMPERATURE IN °C	$R_0 = 100 \ \Omega$	$R_0 = 500 \Omega$	$R_0 = 1000 \ \Omega$	CLASS B	CLASS 2B	
	Nominal Resistance in Ω	Nominal Resistance in Ω	Nominal Resistance in Ω	Tolerance in K	Tolerance in K	
- 50	80.31	401.54	803.07	± 0.55	± 1.10	
- 25	90.19	450.95	901.90	± 0.43	± 0.85	
0	100	500	1000	± 0.30	± 0.60	
25	109.73	548.65	1097.30	± 0.43	± 0.85	
50	119.40	596.98	1193.95	± 0.55	± 1.10	
75	128.99	644.90	1289.80	± 0.68	± 1.35	
100	138.51	692.50	1385.00	± 0.80	± 1.60	
125	147.95	739.76	1479.51	± 0.93	± 1.85	
150	157.33	786.58	1573.15	± 1.05	± 2.10	


Temperature [°C]
Nominal Resistance Value


Platinum SMD Flat Chip Temperature Sensor

Vishay Beyschlag

Resistance tolerance [%]

Tolerance Class B

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com